when we raise the number 5 to the power 2, we write $5^2 = 25$. The reverse of this squaring process is called finding **a square root**. Note that 25 has two square roots 5, and -5 because $5^2 = 25$, and $(-5)^2 = 25$.

Definition 1. Principal Square Root: The principal square root $\sqrt{a} = b$ means:

- 1. $b^2 = a$.
- 2. $b \ge 0$.

Example 1. The principal square root of 25 is $\sqrt{25} = 5$.

Note 1. For any nonnegative real number x (*i.e.* $x \ge 0$),

$$(\sqrt{x})^2 = x$$

Definition 2. Product and Quotient Properties of Square Roots:

$$\sqrt{a \cdot b} = \sqrt{a}\sqrt{b}, \quad a \ge 0, \ b \ge 0$$
$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}, \quad a \ge 0, \ b > 0$$

Example 2. Simplify the following:

$$\sqrt{\frac{25y^3}{9x^2}} = \frac{\sqrt{25y^3}}{\sqrt{9x^2}}$$
$$= \frac{\sqrt{25} \cdot y^2 \cdot y}{\sqrt{9 \cdot x^2}}$$
$$= \frac{\sqrt{25}\sqrt{y^2}\sqrt{y}}{\sqrt{9}\sqrt{x^2}}$$
$$= \frac{5y\sqrt{y}}{3x}$$

Remark 1. **‡WARNING**‡ $\sqrt{a+b} \neq \sqrt{a} + \sqrt{b}$.

Definition 3. Rationalizing the Denominator: To rationalize the denominator is to multiply by a suitable factor to eliminate the square roots in the denominator. Here are some examples:

Denominator factor	Multiply by	<u>New Denominator</u>
$2 + \sqrt{3}$	$2 - \sqrt{3}$	$(2+\sqrt{3})(2-\sqrt{3})=2^2-(\sqrt{3})^2=4-3=1$
$\sqrt{5} - \sqrt{2}$	$\sqrt{5} + \sqrt{2}$	$(\sqrt{5} - \sqrt{2})(\sqrt{5} + \sqrt{2}) = (\sqrt{5})^2 - (\sqrt{2})^2 = 5 - 2 = 3$
$1 + \sqrt{x}$	$1 - \sqrt{x}$	$(1 + \sqrt{x})(1 - \sqrt{x}) = 1^2 - (\sqrt{x})^2 = 1 - x$

Example 3. Rationalize the denominator of: $\frac{x}{\sqrt{x-3}}$. Solution:

$$\frac{x}{\sqrt{x}-3} = \frac{x}{\sqrt{x}-3} \cdot \frac{\sqrt{x}+3}{\sqrt{x}+3}$$
$$= \frac{x \cdot (\sqrt{x}+3)}{(\sqrt{x}-3) \cdot (\sqrt{x}+3)}$$
$$= \frac{x\sqrt{x}+3x}{(\sqrt{x})^2 - 3^2}$$
$$= \frac{x\sqrt{x}+3x}{x-9}$$

Definition 4. <u>Other Roots:</u> If n > 0, we say that b is an <u>nth</u> root of a if $b^n = a$. We next define the **principal nth root** of a real number a, denoted by the symbol $\sqrt[n]{a}$.

- 1. If a is positive (a > 0), then $\sqrt[n]{a} = b$ provided that $b^n = a$ and b > 0.
- 2. If a is negative (a < 0) and n is odd, then $\sqrt[n]{a} = b$ provided that $b^n = a$.
- 3. If a is negative (a < 0) and n is even, then $\sqrt[n]{a}$ is not a real number.

Example 4. $\sqrt[3]{-64} = \sqrt[3]{(-4)^3} = -4$. While $\sqrt[4]{-64}$ is not a real number because n = 4 is even and the radicand = -64 is negative.

Definition 5. Product and Quotient Properties for nth Roots:

$$\sqrt[n]{a \cdot b} = \sqrt[n]{a} \cdot \sqrt[n]{b}$$
$$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$

Definition 6. Rational Exponent: For any real number a and any integer n > 1,

$$a^{\frac{1}{n}} = \sqrt[n]{a}.$$

When n is even and a < 0, $a^{\frac{1}{n}}$ and $\sqrt[n]{a}$ are not real numbers.

Example 5. Evaluate: 1. $(-27)^{\frac{1}{3}} = \sqrt[3]{-27} = \sqrt[3]{(-3)^3} = -3$ 2. $(\frac{1}{16})^{\frac{1}{4}} = \sqrt[4]{\frac{1}{16}} = \sqrt[4]{(\frac{1}{2})^4} = \frac{1}{2}$